scaleway.inference.v1 package
Submodules
scaleway.inference.v1.api module
- class scaleway.inference.v1.api.InferenceV1API(client: Client, *, bypass_validation: bool = False)
Bases:
API
This API allows you to handle your Managed Inference services.
- create_deployment(*, model_id: str, node_type_name: str, endpoints: List[EndpointSpec], region: Optional[str] = None, name: Optional[str] = None, project_id: Optional[str] = None, accept_eula: Optional[bool] = None, tags: Optional[List[str]] = None, min_size: Optional[int] = None, max_size: Optional[int] = None, quantization: Optional[DeploymentQuantization] = None) Deployment
Create a deployment. Create a new inference deployment related to a specific model. :param model_id: ID of the model to use. :param node_type_name: Name of the node type to use. :param endpoints: List of endpoints to create. :param region: Region to target. If none is passed will use default region from the config. :param name: Name of the deployment. :param project_id: ID of the Project to create the deployment in. :param accept_eula: If the model has an EULA, you must accept it before proceeding. The terms of the EULA can be retrieved using the GetModelEula API call. :param tags: List of tags to apply to the deployment. :param min_size: Defines the minimum size of the pool. :param max_size: Defines the maximum size of the pool. :param quantization: Quantization settings to apply to this deployment. :return:
Deployment
Usage:
result = api.create_deployment( model_id="example", node_type_name="example", endpoints=[], )
- create_endpoint(*, deployment_id: str, endpoint: EndpointSpec, region: Optional[str] = None) Endpoint
Create an endpoint. Create a new Endpoint related to a specific deployment. :param deployment_id: ID of the deployment to create the endpoint for. :param endpoint: Specification of the endpoint. :param region: Region to target. If none is passed will use default region from the config. :return:
Endpoint
Usage:
result = api.create_endpoint( deployment_id="example", endpoint=EndpointSpec(), )
- create_model(*, source: ModelSource, region: Optional[str] = None, name: Optional[str] = None, project_id: Optional[str] = None) Model
Import a model. Import a new model to your model library. :param source: Where to import the model from. :param region: Region to target. If none is passed will use default region from the config. :param name: Name of the model. :param project_id: ID of the Project to import the model in. :return:
Model
Usage:
result = api.create_model( source=ModelSource(), )
- delete_deployment(*, deployment_id: str, region: Optional[str] = None) Deployment
Delete a deployment. Delete an existing inference deployment. :param deployment_id: ID of the deployment to delete. :param region: Region to target. If none is passed will use default region from the config. :return:
Deployment
Usage:
result = api.delete_deployment( deployment_id="example", )
- delete_endpoint(*, endpoint_id: str, region: Optional[str] = None) None
Delete an endpoint. Delete an existing Endpoint. :param endpoint_id: ID of the endpoint to delete. :param region: Region to target. If none is passed will use default region from the config.
Usage:
result = api.delete_endpoint( endpoint_id="example", )
- delete_model(*, model_id: str, region: Optional[str] = None) None
Delete a model. Delete an existing model from your model library. :param model_id: ID of the model to delete. :param region: Region to target. If none is passed will use default region from the config.
Usage:
result = api.delete_model( model_id="example", )
- get_deployment(*, deployment_id: str, region: Optional[str] = None) Deployment
Get a deployment. Get the deployment for the given ID. :param deployment_id: ID of the deployment to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Deployment
Usage:
result = api.get_deployment( deployment_id="example", )
- get_deployment_certificate(*, deployment_id: str, region: Optional[str] = None) ScwFile
Get the CA certificate. Get the CA certificate used for the deployment of private endpoints. The CA certificate will be returned as a PEM file. :param deployment_id: :param region: Region to target. If none is passed will use default region from the config. :return:
ScwFile
Usage:
result = api.get_deployment_certificate( deployment_id="example", )
- get_model(*, model_id: str, region: Optional[str] = None) Model
Get a model. Get the model for the given ID. :param model_id: ID of the model to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Model
Usage:
result = api.get_model( model_id="example", )
- list_deployments(*, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None, order_by: Optional[ListDeploymentsRequestOrderBy] = None, project_id: Optional[str] = None, organization_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) ListDeploymentsResponse
List inference deployments. List all your inference deployments. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of deployments to return per page. :param order_by: Order in which to return results. :param project_id: Filter by Project ID. :param organization_id: Filter by Organization ID. :param name: Filter by deployment name. :param tags: Filter by tags. :return:
ListDeploymentsResponse
Usage:
result = api.list_deployments()
- list_deployments_all(*, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None, order_by: Optional[ListDeploymentsRequestOrderBy] = None, project_id: Optional[str] = None, organization_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) List[Deployment]
List inference deployments. List all your inference deployments. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of deployments to return per page. :param order_by: Order in which to return results. :param project_id: Filter by Project ID. :param organization_id: Filter by Organization ID. :param name: Filter by deployment name. :param tags: Filter by tags. :return:
List[Deployment]
Usage:
result = api.list_deployments_all()
- list_models(*, region: Optional[str] = None, order_by: Optional[ListModelsRequestOrderBy] = None, page: Optional[int] = None, page_size: Optional[int] = None, project_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) ListModelsResponse
List models. List all available models. :param region: Region to target. If none is passed will use default region from the config. :param order_by: Order in which to return results. :param page: Page number to return. :param page_size: Maximum number of models to return per page. :param project_id: Filter by Project ID. :param name: Filter by model name. :param tags: Filter by tags. :return:
ListModelsResponse
Usage:
result = api.list_models()
- list_models_all(*, region: Optional[str] = None, order_by: Optional[ListModelsRequestOrderBy] = None, page: Optional[int] = None, page_size: Optional[int] = None, project_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) List[Model]
List models. List all available models. :param region: Region to target. If none is passed will use default region from the config. :param order_by: Order in which to return results. :param page: Page number to return. :param page_size: Maximum number of models to return per page. :param project_id: Filter by Project ID. :param name: Filter by model name. :param tags: Filter by tags. :return:
List[Model]
Usage:
result = api.list_models_all()
- list_node_types(*, include_disabled_types: bool, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None) ListNodeTypesResponse
List available node types. List all available node types. By default, the node types returned in the list are ordered by creation date in ascending order, though this can be modified via the order_by field. :param include_disabled_types: Include disabled node types in the response. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of node types to return per page. :return:
ListNodeTypesResponse
Usage:
result = api.list_node_types( include_disabled_types=False, )
- list_node_types_all(*, include_disabled_types: bool, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None) List[NodeType]
List available node types. List all available node types. By default, the node types returned in the list are ordered by creation date in ascending order, though this can be modified via the order_by field. :param include_disabled_types: Include disabled node types in the response. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of node types to return per page. :return:
List[NodeType]
Usage:
result = api.list_node_types_all( include_disabled_types=False, )
- update_deployment(*, deployment_id: str, region: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None, min_size: Optional[int] = None, max_size: Optional[int] = None, model_id: Optional[str] = None, quantization: Optional[DeploymentQuantization] = None) Deployment
Update a deployment. Update an existing inference deployment. :param deployment_id: ID of the deployment to update. :param region: Region to target. If none is passed will use default region from the config. :param name: Name of the deployment. :param tags: List of tags to apply to the deployment. :param min_size: Defines the new minimum size of the pool. :param max_size: Defines the new maximum size of the pool. :param model_id: Id of the model to set to the deployment. :param quantization: Quantization to use to the deployment. :return:
Deployment
Usage:
result = api.update_deployment( deployment_id="example", )
- update_endpoint(*, endpoint_id: str, region: Optional[str] = None, disable_auth: Optional[bool] = None) Endpoint
Update an endpoint. Update an existing Endpoint. :param endpoint_id: ID of the endpoint to update. :param region: Region to target. If none is passed will use default region from the config. :param disable_auth: By default, deployments are protected by IAM authentication. When setting this field to true, the authentication will be disabled. :return:
Endpoint
Usage:
result = api.update_endpoint( endpoint_id="example", )
- wait_for_deployment(*, deployment_id: str, region: Optional[str] = None, options: Optional[WaitForOptions[Deployment, bool]] = None) Deployment
Get a deployment. Get the deployment for the given ID. :param deployment_id: ID of the deployment to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Deployment
Usage:
result = api.get_deployment( deployment_id="example", )
- wait_for_model(*, model_id: str, region: Optional[str] = None, options: Optional[WaitForOptions[Model, bool]] = None) Model
Get a model. Get the model for the given ID. :param model_id: ID of the model to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Model
Usage:
result = api.get_model( model_id="example", )
scaleway.inference.v1.content module
- scaleway.inference.v1.content.DEPLOYMENT_TRANSIENT_STATUSES: List[DeploymentStatus] = [<DeploymentStatus.CREATING: 'creating'>, <DeploymentStatus.DEPLOYING: 'deploying'>, <DeploymentStatus.DELETING: 'deleting'>]
Lists transient statutes of the enum
DeploymentStatus
.
- scaleway.inference.v1.content.MODEL_TRANSIENT_STATUSES: List[ModelStatus] = [<ModelStatus.PREPARING: 'preparing'>, <ModelStatus.DOWNLOADING: 'downloading'>]
Lists transient statutes of the enum
ModelStatus
.
scaleway.inference.v1.marshalling module
- scaleway.inference.v1.marshalling.marshal_CreateDeploymentRequest(request: CreateDeploymentRequest, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_CreateEndpointRequest(request: CreateEndpointRequest, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_CreateModelRequest(request: CreateModelRequest, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_DeploymentQuantization(request: DeploymentQuantization, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_EndpointPrivateNetworkDetails(request: EndpointPrivateNetworkDetails, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_EndpointPublicNetworkDetails(request: EndpointPublicNetworkDetails, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_EndpointSpec(request: EndpointSpec, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_ModelSource(request: ModelSource, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_UpdateDeploymentRequest(request: UpdateDeploymentRequest, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.marshal_UpdateEndpointRequest(request: UpdateEndpointRequest, defaults: ProfileDefaults) Dict[str, Any]
- scaleway.inference.v1.marshalling.unmarshal_Deployment(data: Any) Deployment
- scaleway.inference.v1.marshalling.unmarshal_DeploymentQuantization(data: Any) DeploymentQuantization
- scaleway.inference.v1.marshalling.unmarshal_EndpointPrivateNetworkDetails(data: Any) EndpointPrivateNetworkDetails
- scaleway.inference.v1.marshalling.unmarshal_EndpointPublicNetworkDetails(data: Any) EndpointPublicNetworkDetails
- scaleway.inference.v1.marshalling.unmarshal_ListDeploymentsResponse(data: Any) ListDeploymentsResponse
- scaleway.inference.v1.marshalling.unmarshal_ListModelsResponse(data: Any) ListModelsResponse
- scaleway.inference.v1.marshalling.unmarshal_ListNodeTypesResponse(data: Any) ListNodeTypesResponse
- scaleway.inference.v1.marshalling.unmarshal_ModelSupportInfo(data: Any) ModelSupportInfo
- scaleway.inference.v1.marshalling.unmarshal_ModelSupportedNode(data: Any) ModelSupportedNode
- scaleway.inference.v1.marshalling.unmarshal_ModelSupportedQuantization(data: Any) ModelSupportedQuantization
scaleway.inference.v1.types module
- class scaleway.inference.v1.types.CreateDeploymentRequest(model_id: 'str', node_type_name: 'str', endpoints: 'List[EndpointSpec]', region: 'Optional[ScwRegion]', name: 'Optional[str]', project_id: 'Optional[str]', accept_eula: 'Optional[bool]', tags: 'Optional[List[str]]', min_size: 'Optional[int]', max_size: 'Optional[int]', quantization: 'Optional[DeploymentQuantization]')
Bases:
object
- accept_eula: Optional[bool]
If the model has an EULA, you must accept it before proceeding.
The terms of the EULA can be retrieved using the GetModelEula API call.
- endpoints: List[EndpointSpec]
List of endpoints to create.
- max_size: Optional[int]
Defines the maximum size of the pool.
- min_size: Optional[int]
Defines the minimum size of the pool.
- model_id: str
ID of the model to use.
- name: Optional[str]
Name of the deployment.
- node_type_name: str
Name of the node type to use.
- project_id: Optional[str]
ID of the Project to create the deployment in.
- quantization: Optional[DeploymentQuantization]
Quantization settings to apply to this deployment.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
List of tags to apply to the deployment.
- class scaleway.inference.v1.types.CreateEndpointRequest(deployment_id: 'str', endpoint: 'EndpointSpec', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
ID of the deployment to create the endpoint for.
- endpoint: EndpointSpec
Specification of the endpoint.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.CreateModelRequest(source: 'ModelSource', region: 'Optional[ScwRegion]', name: 'Optional[str]', project_id: 'Optional[str]')
Bases:
object
- name: Optional[str]
Name of the model.
- project_id: Optional[str]
ID of the Project to import the model in.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- source: ModelSource
Where to import the model from.
- class scaleway.inference.v1.types.DeleteDeploymentRequest(deployment_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
ID of the deployment to delete.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.DeleteEndpointRequest(endpoint_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- endpoint_id: str
ID of the endpoint to delete.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.DeleteModelRequest(model_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- model_id: str
ID of the model to delete.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.Deployment(id: 'str', name: 'str', project_id: 'str', status: 'DeploymentStatus', tags: 'List[str]', node_type_name: 'str', endpoints: 'List[Endpoint]', size: 'int', min_size: 'int', max_size: 'int', model_id: 'str', model_name: 'str', region: 'ScwRegion', error_message: 'Optional[str]', quantization: 'Optional[DeploymentQuantization]', created_at: 'Optional[datetime]', updated_at: 'Optional[datetime]')
Bases:
object
- created_at: Optional[datetime]
Creation date of the deployment.
- error_message: Optional[str]
Displays information if your deployment is in error state.
- id: str
Unique identifier.
- max_size: int
Defines the maximum size of the pool.
- min_size: int
Defines the minimum size of the pool.
- model_id: str
ID of the model used for the deployment.
- model_name: str
Name of the deployed model.
- name: str
Name of the deployment.
- node_type_name: str
Node type of the deployment.
- project_id: str
Project ID.
- quantization: Optional[DeploymentQuantization]
Quantization parameters for this deployment.
- region: str
Region of the deployment.
- size: int
Current size of the pool.
- status: DeploymentStatus
Status of the deployment.
- tags: List[str]
List of tags applied to the deployment.
- updated_at: Optional[datetime]
Last modification date of the deployment.
- class scaleway.inference.v1.types.DeploymentQuantization(bits: 'int')
Bases:
object
- bits: int
The number of bits each model parameter should be quantized to. The quantization method is chosen based on this value.
- class scaleway.inference.v1.types.DeploymentStatus(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- CREATING = 'creating'
- DELETING = 'deleting'
- DEPLOYING = 'deploying'
- ERROR = 'error'
- LOCKED = 'locked'
- READY = 'ready'
- UNKNOWN_STATUS = 'unknown_status'
- class scaleway.inference.v1.types.Endpoint(id: 'str', url: 'str', disable_auth: 'bool', public_network: 'Optional[EndpointPublicNetworkDetails]', private_network: 'Optional[EndpointPrivateNetworkDetails]')
Bases:
object
- disable_auth: bool
Defines whether the authentication is disabled.
- id: str
Unique identifier.
- private_network: Optional[EndpointPrivateNetworkDetails]
- public_network: Optional[EndpointPublicNetworkDetails]
- url: str
For private endpoints, the URL will be accessible only from the Private Network.
In addition, private endpoints will expose a CA certificate that can be used to verify the server’s identity. This CA certificate can be retrieved using the GetDeploymentCertificate API call.
- class scaleway.inference.v1.types.EndpointPrivateNetworkDetails(private_network_id: 'str')
Bases:
object
- private_network_id: str
- class scaleway.inference.v1.types.EndpointPublicNetworkDetails
Bases:
object
- class scaleway.inference.v1.types.EndpointSpec(disable_auth: 'bool', public_network: 'Optional[EndpointPublicNetworkDetails]', private_network: 'Optional[EndpointPrivateNetworkDetails]')
Bases:
object
- disable_auth: bool
By default, deployments are protected by IAM authentication.
When setting this field to true, the authentication will be disabled.
- private_network: Optional[EndpointPrivateNetworkDetails]
- public_network: Optional[EndpointPublicNetworkDetails]
- class scaleway.inference.v1.types.GetDeploymentCertificateRequest(deployment_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.GetDeploymentRequest(deployment_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
ID of the deployment to get.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.GetModelRequest(model_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- model_id: str
ID of the model to get.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.ListDeploymentsRequest(region: 'Optional[ScwRegion]', page: 'Optional[int]', page_size: 'Optional[int]', order_by: 'Optional[ListDeploymentsRequestOrderBy]', project_id: 'Optional[str]', organization_id: 'Optional[str]', name: 'Optional[str]', tags: 'Optional[List[str]]')
Bases:
object
- name: Optional[str]
Filter by deployment name.
- order_by: Optional[ListDeploymentsRequestOrderBy]
Order in which to return results.
- organization_id: Optional[str]
Filter by Organization ID.
- page: Optional[int]
Page number to return.
- page_size: Optional[int]
Maximum number of deployments to return per page.
- project_id: Optional[str]
Filter by Project ID.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
Filter by tags.
- class scaleway.inference.v1.types.ListDeploymentsRequestOrderBy(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- CREATED_AT_ASC = 'created_at_asc'
- CREATED_AT_DESC = 'created_at_desc'
- NAME_ASC = 'name_asc'
- NAME_DESC = 'name_desc'
- class scaleway.inference.v1.types.ListDeploymentsResponse(deployments: 'List[Deployment]', total_count: 'int')
Bases:
object
- deployments: List[Deployment]
List of deployments on the current page.
- total_count: int
Total number of deployments.
- class scaleway.inference.v1.types.ListModelsRequest(region: 'Optional[ScwRegion]', order_by: 'Optional[ListModelsRequestOrderBy]', page: 'Optional[int]', page_size: 'Optional[int]', project_id: 'Optional[str]', name: 'Optional[str]', tags: 'Optional[List[str]]')
Bases:
object
- name: Optional[str]
Filter by model name.
- order_by: Optional[ListModelsRequestOrderBy]
Order in which to return results.
- page: Optional[int]
Page number to return.
- page_size: Optional[int]
Maximum number of models to return per page.
- project_id: Optional[str]
Filter by Project ID.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
Filter by tags.
- class scaleway.inference.v1.types.ListModelsRequestOrderBy(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- CREATED_AT_ASC = 'created_at_asc'
- CREATED_AT_DESC = 'created_at_desc'
- DISPLAY_RANK_ASC = 'display_rank_asc'
- NAME_ASC = 'name_asc'
- NAME_DESC = 'name_desc'
- class scaleway.inference.v1.types.ListModelsResponse(models: 'List[Model]', total_count: 'int')
Bases:
object
- total_count: int
Total number of models.
- class scaleway.inference.v1.types.ListNodeTypesRequest(include_disabled_types: 'bool', region: 'Optional[ScwRegion]', page: 'Optional[int]', page_size: 'Optional[int]')
Bases:
object
- include_disabled_types: bool
Include disabled node types in the response.
- page: Optional[int]
Page number to return.
- page_size: Optional[int]
Maximum number of node types to return per page.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.types.ListNodeTypesResponse(node_types: 'List[NodeType]', total_count: 'int')
Bases:
object
- total_count: int
Total number of node types.
- class scaleway.inference.v1.types.Model(id: 'str', name: 'str', project_id: 'str', tags: 'List[str]', status: 'ModelStatus', description: 'str', has_eula: 'bool', region: 'ScwRegion', nodes_support: 'List[ModelSupportInfo]', parameter_size_bits: 'int', size_bytes: 'int', error_message: 'Optional[str]', created_at: 'Optional[datetime]', updated_at: 'Optional[datetime]')
Bases:
object
- created_at: Optional[datetime]
Creation date of the model.
- description: str
Purpose of the model.
- error_message: Optional[str]
Displays information if your model is in error state.
- has_eula: bool
Defines whether the model has an end user license agreement.
- id: str
Unique identifier.
- name: str
Unique Name identifier.
- nodes_support: List[ModelSupportInfo]
Supported nodes types with quantization options and context lengths.
- parameter_size_bits: int
Size, in bits, of the model parameters.
- project_id: str
Project ID.
- region: str
Region of the model.
- size_bytes: int
Total size, in bytes, of the model files.
- status: ModelStatus
Status of the model.
- tags: List[str]
List of tags applied to the model.
- updated_at: Optional[datetime]
Last modification date of the model.
- class scaleway.inference.v1.types.ModelSource(url: 'str', secret: 'Optional[str]')
Bases:
object
- secret: Optional[str]
- url: str
- class scaleway.inference.v1.types.ModelStatus(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- DOWNLOADING = 'downloading'
- ERROR = 'error'
- PREPARING = 'preparing'
- READY = 'ready'
- UNKNOWN_STATUS = 'unknown_status'
- class scaleway.inference.v1.types.ModelSupportInfo(nodes: 'List[ModelSupportedNode]')
Bases:
object
- nodes: List[ModelSupportedNode]
List of supported node types.
- class scaleway.inference.v1.types.ModelSupportedNode(node_type_name: 'str', quantizations: 'List[ModelSupportedQuantization]')
Bases:
object
- node_type_name: str
Supported node type.
- quantizations: List[ModelSupportedQuantization]
Supported quantizations.
- class scaleway.inference.v1.types.ModelSupportedQuantization(quantization_bits: 'int', allowed: 'bool', max_context_size: 'int')
Bases:
object
- allowed: bool
Tells whether this quantization is allowed for this node type.
- max_context_size: int
Maximum inference context size available for this node type and quantization.
- quantization_bits: int
Number of bits for this supported quantization.
- class scaleway.inference.v1.types.NodeType(name: 'str', stock_status: 'NodeTypeStock', description: 'str', vcpus: 'int', memory: 'int', vram: 'int', disabled: 'bool', beta: 'bool', gpus: 'int', region: 'ScwRegion', created_at: 'Optional[datetime]', updated_at: 'Optional[datetime]')
Bases:
object
- beta: bool
The node type is currently in beta.
- created_at: Optional[datetime]
Creation date of the node type.
- description: str
Current specs of the offer.
- disabled: bool
The node type is currently disabled.
- gpus: int
Number of GPUs.
- memory: int
Quantity of RAM.
- name: str
Name of the node type.
- region: str
Region of the node type.
- stock_status: NodeTypeStock
Current stock status for the node type.
- updated_at: Optional[datetime]
Last modification date of the node type.
- vcpus: int
Number of virtual CPUs.
- vram: int
Quantity of GPU RAM.
- class scaleway.inference.v1.types.NodeTypeStock(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- AVAILABLE = 'available'
- LOW_STOCK = 'low_stock'
- OUT_OF_STOCK = 'out_of_stock'
- UNKNOWN_STOCK = 'unknown_stock'
- class scaleway.inference.v1.types.UpdateDeploymentRequest(deployment_id: 'str', region: 'Optional[ScwRegion]', name: 'Optional[str]', tags: 'Optional[List[str]]', min_size: 'Optional[int]', max_size: 'Optional[int]', model_id: 'Optional[str]', quantization: 'Optional[DeploymentQuantization]')
Bases:
object
- deployment_id: str
ID of the deployment to update.
- max_size: Optional[int]
Defines the new maximum size of the pool.
- min_size: Optional[int]
Defines the new minimum size of the pool.
- model_id: Optional[str]
Id of the model to set to the deployment.
- name: Optional[str]
Name of the deployment.
- quantization: Optional[DeploymentQuantization]
Quantization to use to the deployment.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
List of tags to apply to the deployment.
- class scaleway.inference.v1.types.UpdateEndpointRequest(endpoint_id: 'str', region: 'Optional[ScwRegion]', disable_auth: 'Optional[bool]')
Bases:
object
- disable_auth: Optional[bool]
By default, deployments are protected by IAM authentication.
When setting this field to true, the authentication will be disabled.
- endpoint_id: str
ID of the endpoint to update.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
Module contents
- class scaleway.inference.v1.CreateDeploymentRequest(model_id: 'str', node_type_name: 'str', endpoints: 'List[EndpointSpec]', region: 'Optional[ScwRegion]', name: 'Optional[str]', project_id: 'Optional[str]', accept_eula: 'Optional[bool]', tags: 'Optional[List[str]]', min_size: 'Optional[int]', max_size: 'Optional[int]', quantization: 'Optional[DeploymentQuantization]')
Bases:
object
- accept_eula: Optional[bool]
If the model has an EULA, you must accept it before proceeding.
The terms of the EULA can be retrieved using the GetModelEula API call.
- endpoints: List[EndpointSpec]
List of endpoints to create.
- max_size: Optional[int]
Defines the maximum size of the pool.
- min_size: Optional[int]
Defines the minimum size of the pool.
- model_id: str
ID of the model to use.
- name: Optional[str]
Name of the deployment.
- node_type_name: str
Name of the node type to use.
- project_id: Optional[str]
ID of the Project to create the deployment in.
- quantization: Optional[DeploymentQuantization]
Quantization settings to apply to this deployment.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
List of tags to apply to the deployment.
- class scaleway.inference.v1.CreateEndpointRequest(deployment_id: 'str', endpoint: 'EndpointSpec', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
ID of the deployment to create the endpoint for.
- endpoint: EndpointSpec
Specification of the endpoint.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.CreateModelRequest(source: 'ModelSource', region: 'Optional[ScwRegion]', name: 'Optional[str]', project_id: 'Optional[str]')
Bases:
object
- name: Optional[str]
Name of the model.
- project_id: Optional[str]
ID of the Project to import the model in.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- source: ModelSource
Where to import the model from.
- class scaleway.inference.v1.DeleteDeploymentRequest(deployment_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
ID of the deployment to delete.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.DeleteEndpointRequest(endpoint_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- endpoint_id: str
ID of the endpoint to delete.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.DeleteModelRequest(model_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- model_id: str
ID of the model to delete.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.Deployment(id: 'str', name: 'str', project_id: 'str', status: 'DeploymentStatus', tags: 'List[str]', node_type_name: 'str', endpoints: 'List[Endpoint]', size: 'int', min_size: 'int', max_size: 'int', model_id: 'str', model_name: 'str', region: 'ScwRegion', error_message: 'Optional[str]', quantization: 'Optional[DeploymentQuantization]', created_at: 'Optional[datetime]', updated_at: 'Optional[datetime]')
Bases:
object
- created_at: Optional[datetime]
Creation date of the deployment.
- error_message: Optional[str]
Displays information if your deployment is in error state.
- id: str
Unique identifier.
- max_size: int
Defines the maximum size of the pool.
- min_size: int
Defines the minimum size of the pool.
- model_id: str
ID of the model used for the deployment.
- model_name: str
Name of the deployed model.
- name: str
Name of the deployment.
- node_type_name: str
Node type of the deployment.
- project_id: str
Project ID.
- quantization: Optional[DeploymentQuantization]
Quantization parameters for this deployment.
- region: str
Region of the deployment.
- size: int
Current size of the pool.
- status: DeploymentStatus
Status of the deployment.
- tags: List[str]
List of tags applied to the deployment.
- updated_at: Optional[datetime]
Last modification date of the deployment.
- class scaleway.inference.v1.DeploymentQuantization(bits: 'int')
Bases:
object
- bits: int
The number of bits each model parameter should be quantized to. The quantization method is chosen based on this value.
- class scaleway.inference.v1.DeploymentStatus(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- CREATING = 'creating'
- DELETING = 'deleting'
- DEPLOYING = 'deploying'
- ERROR = 'error'
- LOCKED = 'locked'
- READY = 'ready'
- UNKNOWN_STATUS = 'unknown_status'
- class scaleway.inference.v1.Endpoint(id: 'str', url: 'str', disable_auth: 'bool', public_network: 'Optional[EndpointPublicNetworkDetails]', private_network: 'Optional[EndpointPrivateNetworkDetails]')
Bases:
object
- disable_auth: bool
Defines whether the authentication is disabled.
- id: str
Unique identifier.
- private_network: Optional[EndpointPrivateNetworkDetails]
- public_network: Optional[EndpointPublicNetworkDetails]
- url: str
For private endpoints, the URL will be accessible only from the Private Network.
In addition, private endpoints will expose a CA certificate that can be used to verify the server’s identity. This CA certificate can be retrieved using the GetDeploymentCertificate API call.
- class scaleway.inference.v1.EndpointPrivateNetworkDetails(private_network_id: 'str')
Bases:
object
- private_network_id: str
- class scaleway.inference.v1.EndpointPublicNetworkDetails
Bases:
object
- class scaleway.inference.v1.EndpointSpec(disable_auth: 'bool', public_network: 'Optional[EndpointPublicNetworkDetails]', private_network: 'Optional[EndpointPrivateNetworkDetails]')
Bases:
object
- disable_auth: bool
By default, deployments are protected by IAM authentication.
When setting this field to true, the authentication will be disabled.
- private_network: Optional[EndpointPrivateNetworkDetails]
- public_network: Optional[EndpointPublicNetworkDetails]
- class scaleway.inference.v1.GetDeploymentCertificateRequest(deployment_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.GetDeploymentRequest(deployment_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- deployment_id: str
ID of the deployment to get.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.GetModelRequest(model_id: 'str', region: 'Optional[ScwRegion]')
Bases:
object
- model_id: str
ID of the model to get.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.InferenceV1API(client: Client, *, bypass_validation: bool = False)
Bases:
API
This API allows you to handle your Managed Inference services.
- create_deployment(*, model_id: str, node_type_name: str, endpoints: List[EndpointSpec], region: Optional[str] = None, name: Optional[str] = None, project_id: Optional[str] = None, accept_eula: Optional[bool] = None, tags: Optional[List[str]] = None, min_size: Optional[int] = None, max_size: Optional[int] = None, quantization: Optional[DeploymentQuantization] = None) Deployment
Create a deployment. Create a new inference deployment related to a specific model. :param model_id: ID of the model to use. :param node_type_name: Name of the node type to use. :param endpoints: List of endpoints to create. :param region: Region to target. If none is passed will use default region from the config. :param name: Name of the deployment. :param project_id: ID of the Project to create the deployment in. :param accept_eula: If the model has an EULA, you must accept it before proceeding. The terms of the EULA can be retrieved using the GetModelEula API call. :param tags: List of tags to apply to the deployment. :param min_size: Defines the minimum size of the pool. :param max_size: Defines the maximum size of the pool. :param quantization: Quantization settings to apply to this deployment. :return:
Deployment
Usage:
result = api.create_deployment( model_id="example", node_type_name="example", endpoints=[], )
- create_endpoint(*, deployment_id: str, endpoint: EndpointSpec, region: Optional[str] = None) Endpoint
Create an endpoint. Create a new Endpoint related to a specific deployment. :param deployment_id: ID of the deployment to create the endpoint for. :param endpoint: Specification of the endpoint. :param region: Region to target. If none is passed will use default region from the config. :return:
Endpoint
Usage:
result = api.create_endpoint( deployment_id="example", endpoint=EndpointSpec(), )
- create_model(*, source: ModelSource, region: Optional[str] = None, name: Optional[str] = None, project_id: Optional[str] = None) Model
Import a model. Import a new model to your model library. :param source: Where to import the model from. :param region: Region to target. If none is passed will use default region from the config. :param name: Name of the model. :param project_id: ID of the Project to import the model in. :return:
Model
Usage:
result = api.create_model( source=ModelSource(), )
- delete_deployment(*, deployment_id: str, region: Optional[str] = None) Deployment
Delete a deployment. Delete an existing inference deployment. :param deployment_id: ID of the deployment to delete. :param region: Region to target. If none is passed will use default region from the config. :return:
Deployment
Usage:
result = api.delete_deployment( deployment_id="example", )
- delete_endpoint(*, endpoint_id: str, region: Optional[str] = None) None
Delete an endpoint. Delete an existing Endpoint. :param endpoint_id: ID of the endpoint to delete. :param region: Region to target. If none is passed will use default region from the config.
Usage:
result = api.delete_endpoint( endpoint_id="example", )
- delete_model(*, model_id: str, region: Optional[str] = None) None
Delete a model. Delete an existing model from your model library. :param model_id: ID of the model to delete. :param region: Region to target. If none is passed will use default region from the config.
Usage:
result = api.delete_model( model_id="example", )
- get_deployment(*, deployment_id: str, region: Optional[str] = None) Deployment
Get a deployment. Get the deployment for the given ID. :param deployment_id: ID of the deployment to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Deployment
Usage:
result = api.get_deployment( deployment_id="example", )
- get_deployment_certificate(*, deployment_id: str, region: Optional[str] = None) ScwFile
Get the CA certificate. Get the CA certificate used for the deployment of private endpoints. The CA certificate will be returned as a PEM file. :param deployment_id: :param region: Region to target. If none is passed will use default region from the config. :return:
ScwFile
Usage:
result = api.get_deployment_certificate( deployment_id="example", )
- get_model(*, model_id: str, region: Optional[str] = None) Model
Get a model. Get the model for the given ID. :param model_id: ID of the model to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Model
Usage:
result = api.get_model( model_id="example", )
- list_deployments(*, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None, order_by: Optional[ListDeploymentsRequestOrderBy] = None, project_id: Optional[str] = None, organization_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) ListDeploymentsResponse
List inference deployments. List all your inference deployments. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of deployments to return per page. :param order_by: Order in which to return results. :param project_id: Filter by Project ID. :param organization_id: Filter by Organization ID. :param name: Filter by deployment name. :param tags: Filter by tags. :return:
ListDeploymentsResponse
Usage:
result = api.list_deployments()
- list_deployments_all(*, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None, order_by: Optional[ListDeploymentsRequestOrderBy] = None, project_id: Optional[str] = None, organization_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) List[Deployment]
List inference deployments. List all your inference deployments. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of deployments to return per page. :param order_by: Order in which to return results. :param project_id: Filter by Project ID. :param organization_id: Filter by Organization ID. :param name: Filter by deployment name. :param tags: Filter by tags. :return:
List[Deployment]
Usage:
result = api.list_deployments_all()
- list_models(*, region: Optional[str] = None, order_by: Optional[ListModelsRequestOrderBy] = None, page: Optional[int] = None, page_size: Optional[int] = None, project_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) ListModelsResponse
List models. List all available models. :param region: Region to target. If none is passed will use default region from the config. :param order_by: Order in which to return results. :param page: Page number to return. :param page_size: Maximum number of models to return per page. :param project_id: Filter by Project ID. :param name: Filter by model name. :param tags: Filter by tags. :return:
ListModelsResponse
Usage:
result = api.list_models()
- list_models_all(*, region: Optional[str] = None, order_by: Optional[ListModelsRequestOrderBy] = None, page: Optional[int] = None, page_size: Optional[int] = None, project_id: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None) List[Model]
List models. List all available models. :param region: Region to target. If none is passed will use default region from the config. :param order_by: Order in which to return results. :param page: Page number to return. :param page_size: Maximum number of models to return per page. :param project_id: Filter by Project ID. :param name: Filter by model name. :param tags: Filter by tags. :return:
List[Model]
Usage:
result = api.list_models_all()
- list_node_types(*, include_disabled_types: bool, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None) ListNodeTypesResponse
List available node types. List all available node types. By default, the node types returned in the list are ordered by creation date in ascending order, though this can be modified via the order_by field. :param include_disabled_types: Include disabled node types in the response. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of node types to return per page. :return:
ListNodeTypesResponse
Usage:
result = api.list_node_types( include_disabled_types=False, )
- list_node_types_all(*, include_disabled_types: bool, region: Optional[str] = None, page: Optional[int] = None, page_size: Optional[int] = None) List[NodeType]
List available node types. List all available node types. By default, the node types returned in the list are ordered by creation date in ascending order, though this can be modified via the order_by field. :param include_disabled_types: Include disabled node types in the response. :param region: Region to target. If none is passed will use default region from the config. :param page: Page number to return. :param page_size: Maximum number of node types to return per page. :return:
List[NodeType]
Usage:
result = api.list_node_types_all( include_disabled_types=False, )
- update_deployment(*, deployment_id: str, region: Optional[str] = None, name: Optional[str] = None, tags: Optional[List[str]] = None, min_size: Optional[int] = None, max_size: Optional[int] = None, model_id: Optional[str] = None, quantization: Optional[DeploymentQuantization] = None) Deployment
Update a deployment. Update an existing inference deployment. :param deployment_id: ID of the deployment to update. :param region: Region to target. If none is passed will use default region from the config. :param name: Name of the deployment. :param tags: List of tags to apply to the deployment. :param min_size: Defines the new minimum size of the pool. :param max_size: Defines the new maximum size of the pool. :param model_id: Id of the model to set to the deployment. :param quantization: Quantization to use to the deployment. :return:
Deployment
Usage:
result = api.update_deployment( deployment_id="example", )
- update_endpoint(*, endpoint_id: str, region: Optional[str] = None, disable_auth: Optional[bool] = None) Endpoint
Update an endpoint. Update an existing Endpoint. :param endpoint_id: ID of the endpoint to update. :param region: Region to target. If none is passed will use default region from the config. :param disable_auth: By default, deployments are protected by IAM authentication. When setting this field to true, the authentication will be disabled. :return:
Endpoint
Usage:
result = api.update_endpoint( endpoint_id="example", )
- wait_for_deployment(*, deployment_id: str, region: Optional[str] = None, options: Optional[WaitForOptions[Deployment, bool]] = None) Deployment
Get a deployment. Get the deployment for the given ID. :param deployment_id: ID of the deployment to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Deployment
Usage:
result = api.get_deployment( deployment_id="example", )
- wait_for_model(*, model_id: str, region: Optional[str] = None, options: Optional[WaitForOptions[Model, bool]] = None) Model
Get a model. Get the model for the given ID. :param model_id: ID of the model to get. :param region: Region to target. If none is passed will use default region from the config. :return:
Model
Usage:
result = api.get_model( model_id="example", )
- class scaleway.inference.v1.ListDeploymentsRequest(region: 'Optional[ScwRegion]', page: 'Optional[int]', page_size: 'Optional[int]', order_by: 'Optional[ListDeploymentsRequestOrderBy]', project_id: 'Optional[str]', organization_id: 'Optional[str]', name: 'Optional[str]', tags: 'Optional[List[str]]')
Bases:
object
- name: Optional[str]
Filter by deployment name.
- order_by: Optional[ListDeploymentsRequestOrderBy]
Order in which to return results.
- organization_id: Optional[str]
Filter by Organization ID.
- page: Optional[int]
Page number to return.
- page_size: Optional[int]
Maximum number of deployments to return per page.
- project_id: Optional[str]
Filter by Project ID.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
Filter by tags.
- class scaleway.inference.v1.ListDeploymentsRequestOrderBy(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- CREATED_AT_ASC = 'created_at_asc'
- CREATED_AT_DESC = 'created_at_desc'
- NAME_ASC = 'name_asc'
- NAME_DESC = 'name_desc'
- class scaleway.inference.v1.ListDeploymentsResponse(deployments: 'List[Deployment]', total_count: 'int')
Bases:
object
- deployments: List[Deployment]
List of deployments on the current page.
- total_count: int
Total number of deployments.
- class scaleway.inference.v1.ListModelsRequest(region: 'Optional[ScwRegion]', order_by: 'Optional[ListModelsRequestOrderBy]', page: 'Optional[int]', page_size: 'Optional[int]', project_id: 'Optional[str]', name: 'Optional[str]', tags: 'Optional[List[str]]')
Bases:
object
- name: Optional[str]
Filter by model name.
- order_by: Optional[ListModelsRequestOrderBy]
Order in which to return results.
- page: Optional[int]
Page number to return.
- page_size: Optional[int]
Maximum number of models to return per page.
- project_id: Optional[str]
Filter by Project ID.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
Filter by tags.
- class scaleway.inference.v1.ListModelsRequestOrderBy(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- CREATED_AT_ASC = 'created_at_asc'
- CREATED_AT_DESC = 'created_at_desc'
- DISPLAY_RANK_ASC = 'display_rank_asc'
- NAME_ASC = 'name_asc'
- NAME_DESC = 'name_desc'
- class scaleway.inference.v1.ListModelsResponse(models: 'List[Model]', total_count: 'int')
Bases:
object
- total_count: int
Total number of models.
- class scaleway.inference.v1.ListNodeTypesRequest(include_disabled_types: 'bool', region: 'Optional[ScwRegion]', page: 'Optional[int]', page_size: 'Optional[int]')
Bases:
object
- include_disabled_types: bool
Include disabled node types in the response.
- page: Optional[int]
Page number to return.
- page_size: Optional[int]
Maximum number of node types to return per page.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- class scaleway.inference.v1.ListNodeTypesResponse(node_types: 'List[NodeType]', total_count: 'int')
Bases:
object
- total_count: int
Total number of node types.
- class scaleway.inference.v1.Model(id: 'str', name: 'str', project_id: 'str', tags: 'List[str]', status: 'ModelStatus', description: 'str', has_eula: 'bool', region: 'ScwRegion', nodes_support: 'List[ModelSupportInfo]', parameter_size_bits: 'int', size_bytes: 'int', error_message: 'Optional[str]', created_at: 'Optional[datetime]', updated_at: 'Optional[datetime]')
Bases:
object
- created_at: Optional[datetime]
Creation date of the model.
- description: str
Purpose of the model.
- error_message: Optional[str]
Displays information if your model is in error state.
- has_eula: bool
Defines whether the model has an end user license agreement.
- id: str
Unique identifier.
- name: str
Unique Name identifier.
- nodes_support: List[ModelSupportInfo]
Supported nodes types with quantization options and context lengths.
- parameter_size_bits: int
Size, in bits, of the model parameters.
- project_id: str
Project ID.
- region: str
Region of the model.
- size_bytes: int
Total size, in bytes, of the model files.
- status: ModelStatus
Status of the model.
- tags: List[str]
List of tags applied to the model.
- updated_at: Optional[datetime]
Last modification date of the model.
- class scaleway.inference.v1.ModelSource(url: 'str', secret: 'Optional[str]')
Bases:
object
- secret: Optional[str]
- url: str
- class scaleway.inference.v1.ModelStatus(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- DOWNLOADING = 'downloading'
- ERROR = 'error'
- PREPARING = 'preparing'
- READY = 'ready'
- UNKNOWN_STATUS = 'unknown_status'
- class scaleway.inference.v1.ModelSupportInfo(nodes: 'List[ModelSupportedNode]')
Bases:
object
- nodes: List[ModelSupportedNode]
List of supported node types.
- class scaleway.inference.v1.ModelSupportedNode(node_type_name: 'str', quantizations: 'List[ModelSupportedQuantization]')
Bases:
object
- node_type_name: str
Supported node type.
- quantizations: List[ModelSupportedQuantization]
Supported quantizations.
- class scaleway.inference.v1.ModelSupportedQuantization(quantization_bits: 'int', allowed: 'bool', max_context_size: 'int')
Bases:
object
- allowed: bool
Tells whether this quantization is allowed for this node type.
- max_context_size: int
Maximum inference context size available for this node type and quantization.
- quantization_bits: int
Number of bits for this supported quantization.
- class scaleway.inference.v1.NodeType(name: 'str', stock_status: 'NodeTypeStock', description: 'str', vcpus: 'int', memory: 'int', vram: 'int', disabled: 'bool', beta: 'bool', gpus: 'int', region: 'ScwRegion', created_at: 'Optional[datetime]', updated_at: 'Optional[datetime]')
Bases:
object
- beta: bool
The node type is currently in beta.
- created_at: Optional[datetime]
Creation date of the node type.
- description: str
Current specs of the offer.
- disabled: bool
The node type is currently disabled.
- gpus: int
Number of GPUs.
- memory: int
Quantity of RAM.
- name: str
Name of the node type.
- region: str
Region of the node type.
- stock_status: NodeTypeStock
Current stock status for the node type.
- updated_at: Optional[datetime]
Last modification date of the node type.
- vcpus: int
Number of virtual CPUs.
- vram: int
Quantity of GPU RAM.
- class scaleway.inference.v1.NodeTypeStock(value: str, names: Optional[Any] = None, *args: Any, **kwargs: Any)
Bases:
str
,Enum
An enumeration.
- AVAILABLE = 'available'
- LOW_STOCK = 'low_stock'
- OUT_OF_STOCK = 'out_of_stock'
- UNKNOWN_STOCK = 'unknown_stock'
- class scaleway.inference.v1.UpdateDeploymentRequest(deployment_id: 'str', region: 'Optional[ScwRegion]', name: 'Optional[str]', tags: 'Optional[List[str]]', min_size: 'Optional[int]', max_size: 'Optional[int]', model_id: 'Optional[str]', quantization: 'Optional[DeploymentQuantization]')
Bases:
object
- deployment_id: str
ID of the deployment to update.
- max_size: Optional[int]
Defines the new maximum size of the pool.
- min_size: Optional[int]
Defines the new minimum size of the pool.
- model_id: Optional[str]
Id of the model to set to the deployment.
- name: Optional[str]
Name of the deployment.
- quantization: Optional[DeploymentQuantization]
Quantization to use to the deployment.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.
- tags: Optional[List[str]]
List of tags to apply to the deployment.
- class scaleway.inference.v1.UpdateEndpointRequest(endpoint_id: 'str', region: 'Optional[ScwRegion]', disable_auth: 'Optional[bool]')
Bases:
object
- disable_auth: Optional[bool]
By default, deployments are protected by IAM authentication.
When setting this field to true, the authentication will be disabled.
- endpoint_id: str
ID of the endpoint to update.
- region: Optional[str]
Region to target. If none is passed will use default region from the config.